A Generalized Summation Rule Related to Stirling Numbers

نویسندگان

  • Xiqiang Zhao
  • Shuangshuang Ding
چکیده

In this section and in section 2 and 3 we will generalize the summation rule obtained by L.C. Hsu [7], involving Stirling numbers of the second kind. Given four real numbers a, b, α and β with α 6= 0 and β 6= 0, L.C. Hsu and H.Q. Yu [11], L.C. Hsu and P.J. Shiue [9] defined the symmetric Stirling-type pairs (〈a, b, α, β〉pairs, for short) {s, s} = {s(n, k), s(n, k)} = {s(n, k, a, b;α, β), s(n, k, b, a;β, α)}

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

ZETA SERIES GENERATING FUNCTION TRANSFORMATIONS RELATED TO POLYLOGARITHM FUNCTIONS AND THE k-ORDER HARMONIC NUMBERS

We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a n...

متن کامل

Discrete Summation

These theories introduce basic concepts and proofs about discrete summation: shifts, formal summation, falling factorials and stirling numbers. As proof of concept, a simple summation conversion is provided. 1 Stirling numbers of first and second kind theory Stirling imports Main begin 1.1 Stirling numbers of the second kind fun Stirling :: nat ⇒ nat ⇒ nat where Stirling 0 0 = 1 | Stirling 0 (S...

متن کامل

CONVOLVING THE m-TH POWERS OF THE CONSECUTIVE INTEGERS WITH THE GENERAL FIBONACCI SEQUENCE USING CARLITZ’S WEIGHTED STIRLING POLYNOMIALS OF THE SECOND KIND

Summation rules for various types of convolutions have been the subject of much interest in The Fibonacci Quarterly. The following references are of particular relevance to this topic: Cohen and Hudson [8], Corley [9], Filipponi and Freitag [11], Gould [14], Haukkanen [15], Hsu [19], and finally Philippou and Georghiou [23]. Also consult Neuman and Schonbach’s SIAM Review article [22], where su...

متن کامل

On Log-concavity of a Class of Generalized Stirling Numbers

This paper considers the generalized Stirling numbers of the first and second kinds. First, we show that the sequences of the above generalized Stirling numbers are both log-concave under some mild conditions. Then, we show that some polynomials related to the above generalized Stirling numbers are q-log-concave or q-log-convex under suitable conditions. We further discuss the log-convexity of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005